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BRIEF HISTORY 

In the summer of 1988, K-State Research and Extension issued an in-house 
request for proposals for new directions in research activity.  A  proposal entitled 
Sustaining Irrigated Agriculture in Kansas with Drip Irrigation was submitted by 
irrigation engineers Freddie Lamm, Harry Manges and Dan Rogers and 
agricultural economist Mark Nelson.  This project led by principal investigator 
Freddie Lamm, Northwest Research-Extension Center (NWREC), Colby, was 
funded for the total sum of $89,260.  This project financed the initial development 
of the NWREC SDI system that was expressly designed for research.  In March 
of 1989, the first driplines were installed on a 3 acre study site which has 23 
separately controlled plots.  This site has been in continuous use in SDI corn 
production since that time, being initially used for a 3-year study of SDI water 
requirements for corn.  In addition, it is considered to be a benchmark area that is 
also being monitored annually for system performance to determine SDI 
longevity.  In the summer of 1989, an additional 3 acres was developed to 
determine the optimum dripline spacing for corn production.  A small dripline 
spacing study site was also developed at the Southwest Research-Extension 
Center (SWREC) at Garden City in the spring of 1989. 

In the summer of 1989, further funding was obtained through a special grant from 
the US Department of Agriculture (USDA).  This funding led to expansion of the 
NWREC SDI research site to a total of 13 acres and 121 different research plots.  
This same funding provided for the 10 acre SDI research site at Holcomb, 
Kansas administered by the SWREC.  By June of 1990, K-State Research and 
Extension had established 25 acres of SDI research facilities and nearly 220 
separately controlled plot areas.   

Over the course of the past 14 years, additional significant funding has been 
obtained to conduct SDI research from the USDA, the Kansas Water Resources 
Research Institute, special funding from the Kansas legislature, the Kansas Corn 
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Commission, Pioneer Hi-Bred Inc., and the Mazzei Injector Corporation.  Funding 
provided by the Kansas legislature through the Western Kansas Irrigation 
Research Project (WKIRP) allowed for the expansion of the NWREC site by an 
additional 5.5 acres and 46 additional research plots in 1999.  The NWREC SDI 
research site comprising 18.5 acres and 167 different research plots is the 
largest facility devoted expressly to small-plot row crop research in the Great 
Plains and is probably one of the largest such facilities in the world.  

Since its beginning in 1989, K-State SDI research has had three purposes: 1) to 
enhance water conservation;  2) to protect water quality,  and 3)  to develop 
appropriate SDI technologies for Great Plains conditions. 

The vast majority of the research studies have been conducted with field corn 
because it is the primary irrigated crop in the Central Great Plains.  Although field 
corn has a relatively high water use efficiency, it generally requires a large 
amount of irrigation because of its long growing season and its sensitivity to 
water stress over a great portion of the growing period.   Of the typical 
commodity-type field crops grown in the Central Great Plains, only alfalfa and 
similar forages would require more irrigation than field corn.  Any significant effort 
to reduce the overdraft of the Ogallala aquifer, the primary water source in the 
Central Great Plains, must address the issue of irrigation water use by field corn. 

GENERAL STUDY PROCEDURES 

This report summarizes several studies conducted at the KSU Northwest and 
Southwest Research-Extension Centers at Colby and Garden City, Kansas, 
respectively.  A complete discussion of all the employed procedures lies beyond 
the scope of this paper.  For further information about the procedures for a 
particular study the reader is referred to the accompanying reference papers 
when so listed.  The following general procedures apply to all studies unless 
otherwise stated.    
 
The two study sites were located on deep, well-drained, loessial silt loam soils.  
These medium-textured soils, typical of many western Kansas soils, hold 
approximately 18.9 inches of plant available soil water in the 8 ft profile at field 
capacity.  Study areas were nearly level with land slope less than 0.5% at Colby 
and 0.15% at Garden City.  The climate is semi-arid, with an average annual 
precipitation of 18 inches.  Daily climatic data used in the studies were obtained 
from weather stations operated at each of the Centers. 
 
The studies utilized SDI systems installed in 1989-90 (Lamm et al., 1990).  The 
systems have dual-chamber drip tape installed at a depth of approximately 16-18 
inches with a  5 ft spacing between dripline laterals.  Emitter spacing was 12 
inches and the dripline flowrate was 0.25 gpm/100 ft.  The corn was planted so 
each dripline lateral is centered between two corn rows (Figure 1).   
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Figure 1.  Physical arrangement of the subsurface dripline in relation to the corn 

rows. 
 
A modified ridge-till system was used in corn production with two corn rows, 30 
inches apart, grown on a 5 ft wide bed.  Flat planting was used for the dripline 
spacing studies conducted at both locations.  In these studies, it was not practical 
to match bed spacing to dripline spacing with the available tillage and harvesting 
equipment.  Additionally at Garden City, corn rows were planted perpendicular to 
the driplines in the dripline spacing study.  All corn was grown with conventional 
production practices for each location.  Wheel traffic was confined to the furrows.  
 
Reference evapotranspiration and actual evapotranspiration (AET) was 
calculated using a modified Penman combination equation similar to the 
procedures outlined by Kincaid and Heerman (1974).  The specifics of the 
calculations are fully described by Lamm et al. (1995).  
 
Irrigation was scheduled using a water budget to calculate the root zone 
depletion with precipitation and irrigation water amounts as deposits and 
calculated daily corn water use (AET) as a withdrawal.  If the root-zone depletion 
became negative, it was reset to zero.  Root zone depletion was assumed to be 
zero at crop emergence.  Irrigation was metered separately onto each plot.  Soil 
water amounts were monitored weekly in each plot with a neutron probe in 12 
inch increments to a depth of 8 ft. 
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WATER REQUIREMENT AND IRRIGATION CAPACITY STUDIES 
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relationship between corn yields and irrigation is nonlinear (Figure 2.) prim
because of greater drainage for the heavier irrigation amounts (Figure 3).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yield resulting
from irrigation.

Research studies were conducted at Colby and Garden City, Kansas from 1989-
1991 to determine the water requirement of subsurface drip-irrigated corn. 
Careful management of SDI systems reduced net irrigation needs by nearly 25%, 
while still maintaining top yields of 200 bu/a (Lamm et. al., 1995). The 25% 
reduction in irrigation needs potentially translates into 35-55% savings when 
compared to sprinkler and furrow irrigation systems which typically are operating 
at 85 and 65% application efficiency. Corn yields at Colby were linearly related to 
calculated crop water use (Figure 2), producing 19.6 bu/a of grain for each mm of 

rily 

(AET) in a SDI water requirement study, Colby, KS., 1989-1991. 
 
 

water used above a threshold of 12.9 inches (Lamm et al., 1995).  The 
a

Figure 2.  Corn yield as related to irrigation and calculated evapotranspiration 

DI technology can make significant improvements in water use efficiency 
rough better management of the water balance components.  The 25% 
duction in net irrigation needs is primarily associated with the reduction in in-

eason drainage, elimination of irrigation runoff and reduction in soil evaporation, 
ll non-beneficial components of the water balance.  Additionally, drier surface 
oils allow for increased infiltration of occasional precipitation events.   
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Figure 3.  Calculated evapotranspiration (AET) and seasonal drainage as relate

to irrigation treatment in a SDI water requirement study, Colb
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for SDI in this region, particularly in good corn production years.  There was very 
little yield penalty for increased plant population even when irrigation was 
severely limited or eliminated. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

1989-1991. 

In a later study (1996-2001), corn was grown with subsurface drip irrigation (SDI) 
under 6 different irrigation capacities (0, 0.10, 0.13, 0.17, 0.20 and 0.25 
inches/day) and 4 different plant populations (33100, 29900, 26800, and 23700 
plants/acre). All treatments were irrigated during the offseason to recharge the 
soil water profile. The purpose of the study was to determine appropriate 
inseason SDI capacities as related to different corn plant populations. Daily SDI 
application of even small amounts of water (0.10 inches) doubled corn grain 
yields from 93 to 202 in extremely dry 2000 and 2001 (Figure 4).  Results 
suggested an irrigation capacity of 0.17 inches/day might be adequate SDI 
capacity when planning new systems in this region on deep silt loam soils (Lamm 
and Trooien, 2001).  Analysis of the yield component data indicated that the 
number of kernels/acre is largely determined by providing just a small amount of 
SDI capacity over the nonirrigated control.  It was concluded that small daily 
amounts of water can be beneficial on these deep silt loam soils in establishing 
the number of sinks (kernels) for the accumulation of grain. The final kernel 
weight is established by grain filling conditions between the reproductive period 
and physiological maturity (last 50-60 days of crop season). Thus the extent of 
mining of the soil water reserves during this period will have a large effect on final 
kernel weight and ultimately, corn grain yield.  Increasing plant population from 
approximately 22,500 to 34,500 plants/acre generally increased corn grain yields 
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Figure 4.  SDI corn grain yields as affected by irrigation capacity for wet (1996-
1999) and dry years (2000-2001), KSU Northwest Research Extension 
Center, Colby, Kansas. 

SDI FREQUENCY 

ypically, a smaller volume of soil is wetted with SDI as compared to other types
f irrigation systems and as a result, crop rooting may be limited.  Crops may 
enefit from frequent irrigation under this condition.  However, in a study 
onducted at the KSU Southwest Research-Extension Center in Garden City, 
ansas, corn yields were excellent (190 to 200 bu/a) regardless of whether a 
equency of 1, 3, 5, or 7 days was used for the SDI events (Caldwell et al., 
994).  Higher irrigation water use efficiencies were obtained with the longer 7-
ay frequency because of improved storage of in-season precipitation and 

little need to perform frequent SDI events for fully-irrigated corn on the deep silt 
loam soils ansas. These results agree with a literature review of SDI 

amp, 1998) that indicated that SDI frequency is often only critical for shallow 
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because of reduced drainage below the rootzone.  The results indicate there is 

 of western K
(C
rooted crops on shallow or sandy soils. An additional study conducted in the U.S. 
Southern Great Plains indicated that longer irrigation frequencies had no effect 
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on corn yields provided soil water was managed within acceptable stress ranges
(Howell et al., 1997). There is some evidence that daily irrigation events may be
beneficial under deficit irrigation conditions or in cases where fertigation is
practiced.  Several of the more advanced research studies currently underway at
Kansas State University routinely utilize daily irrigation events. 

OPTIMAL DRIPLINE SPACING 

Increasing the spacing of dripline laterals would be one of the most important
factors in reducing the high investment costs of SDI. Soil type, dripline installation
depth, crop type and the reliability and amount of in-season precipitation are 
major factors that determine the maximum dripline spacing.   

Two studies have been conducted in semi-arid western Kansas to determine th
optimum dripline spacing (installed at a depth of 16-18 inches) for co
production on deep, silt-loam soils (Lamm et al., 1997a, Manges et al., 1995).  
The first study at the KSU Southwest Research-Extension Center at Garden Cit
Kansas evaluated 4 spacings (2.5, 5, 7.5, and 10 ft) with corn planted in 30 
inches rows perpendicular to the dripline lateral.  The other study at the KSU
Northwest Research-Extension Center at Colby, Kansas evaluated 3 spac
7.5, and 10 ft) with corn planted
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 in 30 inch rows parallel to the driplines.  Average 
yields for corresponding treatments were similar between sites even though row 
orientation was different (Table 1).   

 

Table 1. Corn yields obtained with various dripline spacing treatments under full 
              and reduced irrigation at Garden City and Colby, Kansas, 1989-91. 

Corn yield (bu/a) 
Spacing 

treatment Irrigation treatment 

Dripline 
ratio in 

relation to 
5 ft. trt. 

Garden City 
1989-91 

Colby 
1990-91 

  2.5 ft. Full irrigation 2.00 230 ---- 
     
  5.0 ft Full irrigation 1.00 218 216 
     
  7.5 ft Full Irrigation 0.67 208 204 
  7.5 ft Reduced irrigation (67%) 0.37 ---- 173 
     
10.0 ft Full irrigation 0.50 194 194 
10.0 ft Reduced irrigation (50%) 0.50 ---- 149 
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The highest average yield was obtained by the 2.5 ft dripline spacing at Garden 
City, Kansas.  However, the requirement of twice as much dripline (dripline ratio, 
2.00) would be uneconomical for corn production as compared to the standard 5 
ft. dripline spacing.  The results, when incorporated into an economic model, 
showed an advantage for the wider dripline spacings (7.5 and 10 ft.) in some 
higher rainfall years.  However, the standard 5 ft dripline spacing was best when 
averaged over all years for both sites. When subsurface driplines are centered 
between alternate pairs of 30-inch spaced corn rows, each corn row is within 15 
inches of the nearest dripline (Figure 1.)   

Wider dripline spacings will not consistently (year-to-year) or uniformly (row-to-
row) supply crop water needs.  In 1990 at Colby, yields for the 5 and 7.5 ft 
dripline spacings were equal when full irrigation was applied, partially because 
soil water reserves were high at planting.  In 1991, following a dry winter, yields 
for the wider 7.5 ft dripline spacing were reduced by 25 bu/a (Lamm et al., 
1997a).  Similar results were reported by Spurgeon et al. (1991) at Garden City.  
The studies at Colby also sought to resolve whether equivalent amounts of water 
should be applied to the wider dripline spacings or whether irrigation should be 
reduced in relation to the dripline ratio.  Yields were always lower for the corn 
rows furthest from the dripline in the wider dripline spacings regardless of which 
irrigation scheme was used (Figure 5).  However in 1991, there was complete 
crop failure in the corn rows furthest from the dripline when irrigation was 
reduced in relation to the dripline ratio.  Full irrigation on the wider dripline 
spacings at Colby resulted in excessive deep percolation (Darusman et al., 1997) 
and reduced overall water use efficiency (Lamm et al., 1997a).  Soils having a 

strictive clay layer below the dripline installation depth might allow a wider 
pacing without affecting crop yield.  Wider spacings may also be allowable in 
reas of increased precipitation as the dependency of the crop on irrigation is 
ecreased (Powell and Wright, 1993).  

ne of the inherent advantages of a SDI system is the ability to irrigate only a 
action of the crop root zone.  Careful attention to proper dripline spacing is, 
erefore, a key factor in conserving water and protecting water quality. These 
search studies at Colby and Garden City, Kansas determined that driplines 

paced 60 inches apart are most economical for corn grown in rows spaced 30 
ches apart at least on the deep silt loam soils of the region.  However, different 
oil types, such as sands, or different crops with less extensive root systems 
ight require closer dripline spacing.  
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Figure 5. Corn yield distribution as affected by dripline spacing and irrigation 

regime, KSU Northwest Research-Extension Center, Colby, Kansas, 
1990-1991. Note: Individual row yields are mirrored about a centerline 
half way between two adjacent driplines for display purposes. 
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DRIPLINE DEPTH STUDY 

Subsurface drip irrigation (SDI) technologies have been a part of irrigated 
agriculture since the 1960s, but have advanced at a more rapid pace during the 
last 20 years (Camp et al. 2000). In some areas, SDI has not been readily 
accepted because of problems with root intrusion, emitter clog
visual indicators of the wetting pattern. In high value crops, the
valid reasons to avoid SDI.  However, in the Central Great Plains, with typically 
relatively low value commodity crops such as corn, only long term SDI systems 
where installation and investment costs can be amortized over many years, have 
any realistic chance of being economically justified.  Kansas irrigators are 
beginning to try SDI on their own and there has been a lack of research-based 
information on appropriate depth for driplines.  Camp (1998) reviewed a number 
of SDI studies concerning depth of installation and concluded the results are 
often region specific and optimized for a particular crop. 
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A study was initiated at the KSU Northwest Research-Extension Center at Colby, 
Kansas in 1999 to evaluate the effec
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flowrates and pressures at the end of each cropping season to estimate system 
degradation (clogging) with time.  There was no appreciable or consistent effect 
on corn grain yields during the period 1999 igure 6.). l 
to  answer questions about how de cts lo ica
b ggi  prac  stud  no
used to examine the effects of dripline depth on germination in the spring, but 
studies in this regard may be conducted in the future.  Damp surface soils are 
so  o  8 and 12 inch d  depths du he irrigat
season, but not for the deeper depths.  There is a tendency to have slightly more 
late season grasses for the shallower 8 and 12 inch depths, but the level of grass 
competition with the corn is not great.  The dripline depth study is managed with 
the modified ridge-till system (5 ft. bed) as s in Figure 1 tivation 
we ar ely p ed and the ve been
instances thus far of tillage tool damage to th llow 8-inch th driplin
 
 

2
etermined.  System longevity will be evaluated by monitoring individual 

-2002 (F
pth affe

tices).  The

  However, it is stil
o early to ngevity (chem l and 
iological clo ng, pests, and tillage y area has t been 

metimes bserved for the rip neli rin  tg io  n

hown .  Cul for 
eds in e ly summer has been routin ra ticc re a h  no 

e sha  dep es.   

 
 

260

280

Avg

 
 
 

 
 
 
 

 

8 12 16 20 24
Dripline depth (inches)

220

240 Yld00
Yld01
Yld02 

 
 
 
 
 
Figure 6.  Corn grain yields as affected by dripline depth, 1999-2002, KSU 

Northwest Research-Extension Center, Colby, Kansas.  
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gardless of irrigation level.  In contrast, nitrate concentrations increased with 
creasing levels of nitrogen injected with SDI and migrated deeper in the soil 
rofile with increased irrigation (Lamm et. al., 2001).  Nitrogen applied with SDI at 
 depth of 16-18 inches redistributed differently in the soil profile than surface-
pplied preplant nitrogen banded in the furrow (Figure 7).  Since residual soil-

NITROGEN FERTILIZATION WITH SDI 

Since properly designed SDI systems have a high degree of uniformity and c
apply small frequent irrigation amounts, excellent opportunities exist to better 
manage nitrogen fertilization with these systems.  Injecting small amounts of 
nitrogen solution into the irrigation water

into the groundwater. 
 
In a study conducted at Colby, Kansas from 1990-91, there was no difference in
corn yields between preplant surface-applied nitrogen and nitrogen injected int
the driplines throughout the season.  Corn yields averaged 225 to 250 bu/a for 
the fully irrigated and fertilized treatments.  In both years, nearly all of the 
residual nitrate nitrogen measured after corn harvest was located in the upper
inches of the soil profile for the preplan
re
in
p
a
a
nitrogen levels were higher where nitrogen was injected using SDI, it may be 
possible to obtain similar high corn yields using lower amounts of injected 
nitrogen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Nitrate concentrations in the soil profile for preplant surface-applied 

and SDI injected nitrogen treatments, Colby, Kansas, 1990-91.  Data is 
for selected nitrogen fertilizer rate treatments with full irrigation (100% 
of AET).  
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nitrogen which corresponded to the 160 lbs/acre nitrogen fertigation rate (Figure 
8). Average yields for the 160 lbs/acre nitrogen fertigation rate was 213 bu/acre.  
Corn yield to ANU ratio for the 160 lbs/acre nitrogen fertigation rate was a high 
53:1. The results emphasize that high-yielding corn production also can be 
efficient in nutrient and water use. 
 
 
 
 
 
 
 
 
 
 
 

igure 8.  Average (1994-96) corn yield, apparent nitrogen uptake in the above-
ground biomass, and water use efficiency as related to the total applied 
nitrogen (preseason amount, starter fertilizer, fertigation, and the 
naturally occurring N in the irrigation water). Total applied nitrogen 
exceeded fertigation applied nitrogen by 30 lb/acre.  

A follow-up four year study was conducted at the KSU Northwest Research-
Extension Center at Colby, Kansas on a deep Keith silt loam soil to develop a 
Best Management Practice (BMP) for nitrogen fertigation for corn using SDI.  
Residual ammonium- and nitrate-nitrogen levels in the soil profile, corn yields, 
apparent nitrogen uptake (ANU) and water use efficiency (WUE) were utilized as 
criteria for evaluating six different nitrogen fertigation rates, 0, 80, 120, 160, 200, 
and 240 lbs/acre.  The final BMP was a nitrogen fertigation level of 160 lbs/acre 
with other non-fertigation applications bringing the total applied nitrogen to 
approximately 190 lbs/acre (Lamm et. al., 1997b).  The BMP also states that 
irrigation is to be scheduled and limited to replace approximately 75% of ET.  
Corn yield, ANU, and WUE all plateaued at the same level of total applied 
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ECONOMICS OF SDI 

DI has not been typically used for row crop production in the Central Great 
lains.  Typically, SDI has much higher investment costs as compared to other 
ressurized irrigation systems such as full size center pivot sprinklers.  However, 

 
sprinklers
decrease
of increas acres 

igure 9).  Small and irregular shape fields may be ideal candidates for SDI. 
 
 
 

 
 
Figure 9. CP and SDI system costs as related to field size. (after O’Brien et al., 

1997) 
 
Economic comparisons of CP and SDI systems are sensitive to the underlying 
assumptions used in the analysis (Lamm et. al., 2003). The results show that 
these comparisons are very sensitive to size of CP irrigation system, shape of 
field (full vs. partial circle CP system), life of SDI system, SDI system cost with 
advantages favoring larger CP systems and cheaper, longer life SDI systems.  
The results are moderately sensitive to corn yield, corn harvest price, yield/price 
combinations and very sensitive to higher potential yields with SDI with 
advantages favoring SDI as corn yields and price increase.   A Microsoft Excel 
spreadsheet template to make CP and SDI economic comparisons is available 
for downloading from the internet for free at 
http://www.oznet.ksu.edu/sdi/Software/SDISoftware.htm

S
P
p
there are realistic scenarios where SDI can directly compete with center pivot

 for corn production in the Central Great Plains.  As field size 
s, SDI can more directly compete with center pivot sprinklers because 
ing higher ratio of center pivot sprinkler (CP) costs to irrigated 

(F
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SYSTEM LIFE OF SDI 

SDI system life must be at least 10-15 years to reasonably approach ec
competitiveness with full sized center pivot sprinkler systems that typically
20-25 years.  Using careful and consistent maintenance, a 20 year SDI system 
life appears obtainable when high quality water from the Ogallala aquifer is used.
The system performance of the K-State SDI research plots has been monitored 
annually since 1989 with few signs of significant degradation.  The benchmark 
study area has received shock chlorination approximately 2-3 times each 
season, but has not received any other chemical amendments, such as acid.  
The water source at this site has a TDS of 279, hardness of 189.1, and pH of 7
This water source would be a moderate chemical clogging hazard according to
traditional classifications (Nakayama and Bucks, 1986).  It is possible that the 
depth of the SDI system (16-18 inches) has reduced the chemical clogging 
hazards due to less temperature fluctuations and negligible evaporation directly 

contributed to the progress of KSU SDI corn research over the years since 19
These include, Bill Spurgeon, Todd Trooien, Harry Manges, Danny Rogers, 
Mahbub Alam, Loyd Stone, Alan Schlegel, Gary Clark, Dan O’Brien, Troy 

onomic 
 last 

  

.8.  
 

from the dripline. 

CONCLUDING STATEMENTS 

Research progress has been steady since 1989. Much of K-State’s SDI research 
is summarized at K-State’s SDI Website at http://www.oznet.ksu.edu/sdi/ 
 
Irrigators are watching the results of K-State closely. Some irrigators have begun 
to experiment with the technology and most appear happy with the results they 
are obtaining.  It is K-State’s hope that by developing a knowledge base in 
advance of the irrigator adoption phase that the misapplication of SDI technology 
and overall system failures can be minimized. Economics of the typical Great 
Plains row crops will not allow frequent system replacement or major 
renovations.  Irrigators must carefully monitor and maintain the SDI system to 
assure a long system life. 
 
Continued or new areas of research are concentrating on optimizing allocations 
of water, seed, and nutrients, utilizing livestock wastewater, developing 
preliminary information about SDI use with other crops besides corn, water and 
chemical application uniformity, and finally system design characteristics and 
economics with a view towards system longevity.   
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